Abstract

We construct the asymptotic formulas for solutions of a certain linear second-order delay differential equation as independent variable tends to infinity. When the delay equals zero this equation turns into the so-called one-dimensional Schrodinger equation at energy zero with Wigner–von Neumann type potential. The question of interest is how the behaviour of solutions changes qualitatively and quantitatively when the delay is introduced in this dynamical model. We apply the method of asymptotic integration that is based on the ideas of the centre manifold theory in its presentation with respect to the systems of functional differential equations with oscillatory decreasing coefficients.

Highlights

  • We construct some asymptotic formulas for solutions of a certain linear second-order delay differential equation when the independent variable tends to infinity

  • this equation turns into the so-called one-dimensional Schrodinger equation at energy zero

  • when the delay is introduced in this dynamical model

Read more

Summary

Introduction

Матрицы A1, A2 и A3 определяются формулами (29)–(31), а матрица Y1(t), элементами которой являются тригонометрические многочлены с нулевым средним значением, находится из уравнения (32) и имеет следующий вид: Y1(t) = Чтобы улучшить оценку остаточного члена, осуществим в системе (55) усредняющую замену u1 = I + V (t)t−(ρ+1) u2, где матрица V (t), элементами которой являются тригонометрические многочлены с нулевым средним значением, определяется как решение уравнения

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call