Abstract
This paper investigates a class of multiple-threshold models, called Multiple Threshold Double AR (MTDAR) models. A sufficient condition is obtained for the existence and uniqueness of a strictly stationary and ergodic solution to the first-order MTDAR model. We study the Quasi-Maximum Likelihood Estimator (QMLE) of the MTDAR model. The estimated thresholds are shown to be n-consistent, asymptotically independent, and to converge weakly to the smallest minimizer of a two-sided compound Poisson process. The remaining parameters are n-consistent and asymptotically multivariate normal. In particular, these results apply to the multiple threshold ARCH model, with or without AR part, and to the multiple threshold AR models with ARCH errors. A score-based test is also presented to determine the number of thresholds in MTDAR models. The limiting distribution is shown to be distribution-free and is easy to implement in practice. Simulation studies are conducted to assess the performance of the QMLE and our score-based test in finite samples. The results are illustrated with an application to the quarterly US real GNP data over the period 1947–2013.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.