Abstract

An asymptotic Green's function in homogeneous anisotropic viscoelastic media is derived. The Green's function in viscoelastic media is formally similar to that in elastic media, but its computation is more involved. The stationary slowness vector is, in general, complex valued and inhomogeneous. Its computation involves finding two independent real-valued unit vectors which specify the directions of its real and imaginary parts and can be done either by iterations or by solving a system of coupled polynomial equations. When the stationary slowness direction is found, all quantities standing in the Green's function such as the slowness vector, polarization vector, phase and energy velocities and principal curvatures of the slowness surface can readily be calculated.The formulae for the exact and asymptotic Green's functions are numerically checked against closed-form solutions for isotropic and simple anisotropic, elastic and viscoelastic models. The calculations confirm that the formulae and developed numerical codes are correct. The computation of theP-wave Green's function in two realistic materials with a rather strong anisotropy and absorption indicates that the asymptotic Green's function is accurate at distances greater than several wavelengths from the source. The error in the modulus reaches at most 4% at distances greater than 15 wavelengths from the source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.