Abstract

ABSTRACTWe study sequences of scaled edge-corrected empirical (generalized) K-functions (modifying Ripley's K-function) each of them constructed from a single observation of a d-dimensional fourth-order stationary point process in a sampling window which grows together with some scaling rate unboundedly as . Under some natural assumptions it is shown that the normalized difference between scaled empirical and scaled theoretical K-function converges weakly to a mean zero Gaussian process with simple covariance function. This result suggests discrepancy measures between empirical and theoretical K-function with known limit distribution which allow to perform goodness-of-fit tests for checking a hypothesized point process based only on its intensity and (generalized) K-function. Similar test statistics are derived for testing the hypothesis that two independent point processes in have the same distribution without explicit knowledge of their intensities and K-functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.