Abstract

Given a ${q}$ -ary frequency hopping sequence set of length ${n}$ and size ${M}$ with Hamming correlation ${H}$ , one can obtain a ${q}$ -ary (nonlinear) cyclic code of length ${n}$ and size nM with Hamming distance n-H . Thus, every upper bound on the size of a code from coding theory gives an upper bound on the size of a frequency hopping sequence set. Indeed, all upper bounds from coding theory have been converted to upper bounds on frequency hopping sequence sets [1] . On the other hand, a lower bound from coding theory does not automatically produce a lower bound for frequency hopping sequence sets. In particular, the most important lower bound, the Gilbert-Varshamov bound in coding theory, has not been transformed to a valid lower bound on frequency hopping sequence sets. The purpose of this paper is to transform the Gilbert-Varshamov bound from coding theory to frequency hopping sequence sets by establishing a connection between a special family of cyclic codes (which are called hopping cyclic codes in this paper) and frequency hopping sequence sets. We provide two proofs of the Gilbert-Varshamov bound. One is based on a probabilistic method that requires advanced tool–martingale. This proof covers the whole rate region. Another proof is purely elementary but only covers part of the rate region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.