Abstract
The problem of integer partitions is addressed using the microcanonical approach which is based on the analogy between this problem in the number theory and the calculation of microstates of a many-boson system. For ordinary (one-dimensional) partitions, the correction to the leading asymptotic is obtained. The estimate for the number of two-dimensional (plane) partitions coincides with known asymptotic results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.