Abstract

The problem of the asymptotically correct reduction of a 3-D mass (heat) transfer equation to a 1-D equation in a flow with anisotropic diffusion properties is considered. The convective mass (heat) transfer domain is a cylindrical channel of arbitrary cross section. The diffusion coefficient matrix is assumed to be independent of the spatial coordinates. In the equivalent diffusion equation constructed, a certain effective diffusion (dispersion [1]) coefficient is introduced. Formulas for this coefficient are obtained. A relation between the effective diffusion coefficient calculations and the problem of minimization of a certain functional is established, i. e. the possibility of calculations based on variational methods is noted. An example of an exact calculation of the effective diffusion coefficient is considered. The possibility of a generalization of the problem, in which the effective diffusion (heat conduction) equation is essentially a nonlinear equation of general form for the one-dimensional case, is indicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call