Abstract

The asymptotic stress and velocity fields of a crack propagating steadily and quasi-statically into an elastic-plastic material are presented. The material is characterized by J 2-flow theory with linear strain- hardening. The possibility of reloading on the crack flanks is taken into account. The cases of anti-plane strain (mode III), plane strain (modes I and II), and plane stress (modes I and II) are considered. Numerical results are given for the strength of the singularity and for the distribution of the stress and velocity fields in the plastic loading, elastic unloading and plastic reloading regions, as functions of the strain-hardening parameter. An attempt is made to make a connection with the perfectly-plastic solutions in the limit of vanishing strain-hardening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.