Abstract
Theis’ theory (1935), later improved by Hantush & Jacob (1955) and Moench (1971), is a technique designed to study the water level in aquifers. The key formula in this theory is a certain integral transform H[g](r,t) of the pumping function g that depends on the time t and the relative position r to the pumping point as well as on other physical parameters. Several analytic approximations of H[g](r,t) have been investigated in the literature that are valid and accurate in certain regions of r, t and the mentioned physical parameters. In this paper, the analysis of possible analytic approximations of H[g](r,t) is completed by investigating asymptotic expansions of H[g](r,t) in a region of the parameters that is of interest in practical situations, but that has not yet been investigated. Explicit and/or recursive algorithms for the computation of the coefficients of the expansions and estimates for the remainders are provided. Some numerical examples based on an actual physical experiment conducted by Layne-Western Company in 1953 illustrate the accuracy of the approximations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.