Abstract
We consider Gowdy spacetimes under the assumption that the spatial hypersurfaces are diffeomorphic to the torus. The relevant equations are then wave map equations with the hyperbolic space as a target. In a paper by Grubiš;ić and Moncrief, a formal expansion of solutions in the direction towards the singularity was proposed. Later, Kichenassamy and Rendall constructed a family of real analytic solutions with the maximum number of free functions and the desired asymptotics at the singularity. The condition of real analyticity was subsequently removed by Rendall. In a previous paper, we proved that one can put a condition on initial data that leads to asymptotic expansions. However, control of up to and including three derivatives in L2 was necessary, and the condition was rather technical. The main point of the present paper is to demonstrate the existence of certain monotone quantities and to illustrate how these can be used to weaken the assumptions to one derivative in the sup norm. Furthermore, we demonstrate that the false spikes do not appear in the disc model. Finally, we show that knowledge concerning the behaviour of the solution (as time tends to the singularity) for one fixed spatial point in some situations can be used to conclude that there are smooth expansions in the neighbourhood of that spatial point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.