Abstract

We study power series whose coefficients are holomorphic functions of another complex variable and a nonnegative real parameter s, and are given by a differential recursion equation. For positive integer s, series of this form naturally occur as formal solutions of some partial differential equations with constant coefficients, while for s = 0 they satisfy certain perturbed linear ordinary differential equations. For arbitrary s ⩾ 0 , these series solve a differential-integral equation. Such power series, in general, are not multisummable. However, we shall prove existence of solutions of the same differential-integral equation that in sectors of, in general, maximal opening have the formal series as their asymptotic expansion. Furthermore, we shall indicate that the solutions so obtained can be related to one another in a fairly explicit manner, thus exhibiting a Stokes phenomenon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.