Abstract

This paper addresses the challenge of robust simultaneous estimation of state and actuator faults for Lipschitz nonlinear systems with unknown perturbations acting on both the state dynamics and output measurements. The existing methods enhance the estimation robustness by suppressing the perturbations or decoupling them under satisfaction of the matching condition. This work considers a total elimination of the perturbation effects through perturbation reconstruction. An adaptive sliding mode unknown input observer (ASMUIO) is developed to realize simultaneous asymptotic estimation of the state, faults and perturbations. It leverages a descriptor system reformulation of the original system by regarding partial perturbations as virtual state and the rest part as virtual faults. The proposed ASMUIO has feasibility guarantee and is solved via a linear matrix inequality (LMI) setting. Based on the ASMUIO, an adaptive backstepping fault-tolerant control (FTC) is further designed to achieve good tracking performance. The design efficacy is illustrated through comparative simulations of the proposed method against representative methods in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.