Abstract

We investigate the large-time behavior of the solutions of the two-dimensional Keller-Segel system in self-similar variables, when the total mass is subcritical, that is less than 8 π after a proper adimensionalization. It was known from previous works that all solutions converge to stationary solutions, with exponential rate when the mass is small. Here we remove this restriction and show that the rate of convergence measured in relative entropy is exponential for any mass in the subcritical range, and independent of the mass. The proof relies on symmetrization techniques, which are adapted from a paper of Diaz et al. and allow us to establish uniform estimates for L p norms of the solution. Exponential convergence is obtained by the mean of a linearization in a space which is defined consistently with relative entropy estimates and in which the linearized evolution operator is self-adjoint. The core of proof relies on several new spectral gap estimates which are of independent interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.