Abstract

We analyze entropic uncertainty relations for two orthogonal measurements on a N-dimensional Hilbert space, performed in two generic bases. It is assumed that the unitary matrix U relating both bases is distributed according to the Haar measure on the unitary group. We provide lower bounds on the average Shannon entropy of probability distributions related to both measurements. The bounds are stronger than those obtained with use of the entropic uncertainty relation by Maassen and Uffink, and they are optimal up to additive constants. We also analyze the case of a large number of measurements and obtain strong entropic uncertainty relations, which hold with high probability with respect to the random choice of bases. The lower bounds we obtain are optimal up to additive constants and allow us to prove a conjecture by Wehner and Winter on the asymptotic behavior of constants in entropic uncertainty relations as the dimension tends to infinity. As a tool we develop estimates on the maximum operator norm of a submatrix of a fixed size of a random unitary matrix distributed according to the Haar measure, which are of independent interest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call