Abstract

The point estimation problems that emerge in Bayesian predictive inference are concerned with random quantities which depend on both observable and non-observable variables. Intuition suggests splitting such problems into two phases, the former relying on estimation of the random parameter of the model, the latter concerning estimation of the original quantity from the distinguished element of the statistical model obtained by plug-in of the estimated parameter in the place of the random parameter. This paper discusses both phases within a decision theoretic framework. As a main result, a non-standard loss function on the space of parameters, given in terms of a Wasserstein distance, is proposed to carry out the first phase. Finally, the asymptotic efficiency of the entire procedure is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.