Abstract

More than two decades ago the first strong experimental results appeared suggesting that turbulent flows might not be asymptotically independent of their initial (or upstream) conditions (Wygnanski et al., 1986, “On the Large-Scale Structures in Two-Dimensional Smalldeficit, Turbulent Wakes,” J. Fluid Mech., 168, pp. 31–71). And shortly thereafter the first theoretical explanations were offered as to why we came to believe something about turbulence that might not be true (George, 1989, “The Self-Preservation of Turbulent Flows and its Relation to Initial Conditions and Coherent Structures,” Advances in Turbulence, W. George and R. Arndt, eds., Hemisphere, New York, pp. 1–41). These were contrary to popular belief. It was recognized immediately that if turbulence was indeed asymptotically independent of its initial conditions, it meant that there could be no universal single point model for turbulence (George, 1989, “The Self-Preservation of Turbulent Flows and its Relation to Initial Conditions and Coherent Structures,” Advances in Turbulence, W. George and R. Arndt, eds., Hemisphere, New York, pp. 1–41; Taulbee, 1989, “Reynolds Stress Models Applied to Turbulent Jets,” Advances in Turbulence, W. George and R. Arndt, eds., Hemisphere, New York, pp. 29–73) certainly consistent with experience, but even so not easy to accept for the turbulence community. Even now the ideas of asymptotic independence still dominate most texts and teaching of turbulence. This paper reviews the substantial additional evidence - experimental, numerical and theoretical - for the asymptotic effect of initial and upstream conditions that has accumulated over the past 25 years. Also reviewed is evidence that the Kolmogorov theory for small scale turbulence is not as general as previously believed. Emphasis has been placed on the canonical turbulent flows (especially wakes, jets, and homogeneous decaying turbulence), which have been the traditional building blocks for our understanding. Some of the important outstanding issues are discussed; and implications for the future of turbulence modeling and research, especially LES and turbulence control, are also considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.