Abstract

The asymptotic behavior of the attraction–repulsion Keller–Segel model in one dimension is studied in this paper. The global existence of classical solutions and nonconstant stationary solutions of the attraction–repulsion Keller–Segel model in one dimension were previously established by Liu and Wang (2012), which, however, only provided a time‐dependent bound for solutions. In this paper, we improve the results of Liu and Wang (2012) by deriving a uniform‐in‐time bound for solutions and furthermore prove that the model possesses a global attractor. For a special case where the attractive and repulsive chemical signals have the same degradation rate, we show that the solution converges to a stationary solution algebraically as time tends to infinity if the attraction dominates. Copyright © 2014 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.