Abstract

Recent experimental and numerical observations have shown the significance of the Basset–Boussinesq memory term on the dynamics of small spherical rigid particles (or inertial particles) suspended in an ambient fluid flow. These observations suggest an algebraic decay to an asymptotic state, as opposed to the exponential convergence in the absence of the memory term. Here, we prove that the observed algebraic decay is a universal property of the Maxey–Riley equation. Specifically, the particle velocity decays algebraically in time to a limit that is $$\mathcal {O}(\epsilon )$$ -close to the fluid velocity, where $$0<\epsilon \ll 1$$ is proportional to the square of the ratio of the particle radius to the fluid characteristic length scale. These results follow from a sharp analytic upper bound that we derive for the particle velocity. For completeness, we also present a first proof of the global existence and uniqueness of mild solutions to the Maxey–Riley equation, a nonlinear system of fractional differential equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call