Abstract

Summary Semiparametric maximum likelihood estimation with estimating equations (SMLE) is more flexible than traditional methods; it has fewer restrictions on distributions and regression models. The required information about distribution and regression structures is incorporated in estimating equations of the SMLE to improve the estimation quality of non-parametric methods. The likelihood of SMLE for censored data involves complicated implicit functions without closed-form expressions, and the first derivatives of the log-profile-likelihood cannot be expressed as summations of independent and identically distributed random variables; it is challenging to derive asymptotic properties of the SMLE for censored data. For group-censored data, the paper shows that all the implicit functions are well defined and obtains the asymptotic distributions of the SMLE for model parameters and lifetime distributions. With several examples the paper compares the SMLE, the regular non-parametric likelihood estimation method and the parametric MLEs in terms of their asymptotic efficiencies, and illustrates application of SMLE. Various asymptotic distributions of the likelihood ratio statistics are derived for testing the adequacy of estimating equations and a partial set of parameters equal to some known values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.