Abstract

The distributions of nearest neighbour random walks on hypercubesin continuous timet0 can be expressed in terms of binomial distributions; their limit behaviour fort, N →∞ is well-known. We study here these random walks in discrete time and derive explicit bounds for the deviation of their distribution from their counterparts in continuous time with respect to the total variation norm. Our results lead to a recent asymptotic result of Diaconis, Graham and Morrison for the deviation from uniformity forN →∞.Our proofs use Krawtchouk polynomials and a version of the Diaconis–Shahshahani upper bound lemma. We also apply our methods to certain birth-and-death random walks associated with Krawtchouk polynomials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.