Abstract
In this paper we give a unified proof to the soliton resolution conjecture along a sequence of times, for the semilinear focusing energy critical wave equations in the radial case and two dimensional equivariant wave map equations, including the four dimensional radial Yang Mills equation, without using outer energy type inequalities. Such inequalities have played a crucial role in previous works with similar results. Roughly speaking, we prove that along a sequence of times $t_n\to T_+$ (the maximal time of existence), the solution decouples to a sum of rescaled solitons and a term vanishing in the energy space, plus a free radiation term in the global case or a regular part in the finite time blow up case. The main difficulty is that in general (for instance for the radial four dimensional Yang Mills case and the radial six dimensional semilinear wave case) we do not have a favorable outer energy inequality for the associated linear wave equations. Our main new input is the simultaneous use of two virial identities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.