Abstract

In this paper, governing equations and solutions for asymptotic singular and non-singular crack-tip sectors in perfectly plastic materials are first summarized under combined in-plane and out-of-plane shear loading conditions. The crack-tip fields under mixed mode II/III loading conditions are then investigated. An assembly of crack-tip sectors is adopted with stress discontinuities along the border of the two constant stress sectors. The solutions of the crack-tip fields under pure mode II, mixed mode II/III, and nearly pure mode III loading conditions are presented. The trends of the angular variations of the mixed mode II/III crack-tip stresses agree with those of the available computational analysis and the asymptotic analysis for low strain hardening materials. The pure mode II crack-tip stresses are similar to those of Hutchinson and the nearly pure mode III stresses are similar to those of the pure mode III crack-tip field of Rice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.