Abstract
In finite mixture modelling, it is crucial to select the number of components for a data set. We have proposed an entropy regularized likelihood (ERL) learning principle for the finite mixtures to solve this model selection problem under regularization theory. In this paper, we further give an asymptotic analysis of the ERL learning, and find that the global minimization of the ERL function in a simulated annealing way (i.e., the regularization factor is gradually reduced to zero) leads to automatic model selection on the finite mixtures with a good parameter estimation. As compared with the EM algorithm, the ERL learning can go across the local minima of the negative likelihood and keep robust with respect to initialization. The simulation experiments then prove our theoretic analysis.KeywordsMixture ModelGaussian Mixture ModelTrue ParameterFinite MixtureLearning PrincipleThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.