Abstract
By running the life tests at higher stress levels than normal operating conditions, accelerated life testing quickly yields information on the lifetime distribution of a test unit. The lifetime at the design stress is then estimated through extrapolation using a regression model. In constant-stress testing, a unit is tested at a fixed stress level until failure or the termination time point of the test, while step-stress testing allows the experimenter to gradually increase the stress levels at some pre-fixed time points during the test. In this article, the optimal k-level constant-stress and step-stress accelerated life tests are compared for the exponential failure data under Type-I censoring. The objective is to quantify the advantage of using the step-stress testing relative to the constant-stress one. A log-linear relationship between the mean lifetime parameter and stress level is assumed and the cumulative exposure model holds for the effect of changing stress in step-stress testing. The optimal design point is then determined under C-optimality, D-optimality, and A-optimality criteria. The efficiency of step-stress testing compared to constant-stress testing is discussed in terms of the ratio of optimal objective functions based on the information matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.