Abstract

Virtually all applications of time-varying conditional variance models use a quasimaximum-likelihood estimator (QMLE). Consistency of a QMLE requires an identification condition that the quasi-log-likelihood have a unique maximum at the true conditional mean and relative scale parameters. We show that the identification condition holds for a non-Gaussian QMLE if the conditional mean is identically zero or if a symmetry condition is satisfied. Without symmetry, an additional parameter, for the location of the innovation density, must be added for identification. We calculate the efficiency loss from adding such a parameter under symmetry, when the parameter is not needed. We also show that there is no efficiency loss for the conditional variance parameters of a GARCH process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.