Abstract

Consider a tandem queue consisting of two single-server queues in series, with a Poisson arrival process at the first queue and arbitrarily distributed service times, which for any customer are identical in both queues. For this tandem queue, we relate the tail behaviour of the sojourn time distribution and the workload distribution at the second queue to that of the (residual) service time distribution. As a by-result, we prove that both the sojourn time distribution and the workload distribution at the second queue are regularly varying at infinity of index 1−ν, if the service time distribution is regularly varying at infinity of index −ν (ν>1). Furthermore, in the latter case we derive a heavy-traffic limit theorem for the sojourn time S (2) at the second queue when the traffic load ρ↑ 1. It states that, for a particular contraction factor Δ (ρ), the contracted sojourn time Δ (ρ) S (2) converges in distribution to the limit distribution H(·) as ρ↑ 1 where .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.