Abstract

There have been numerous proposals in the literature to generalize the classical Fourier transform by making use of the Hamiltonian quaternion algebra. The present paper reviews the quaternion linear canonical transform (QLCT) which is a generalization of the quaternion Fourier transform and it studies a number of its properties. In the first part of this paper, we establish a generalized Riemann–Lebesgue lemma for the (right-sided) QLCT. This lemma prescribes the asymptotic behaviour of the QLCT extending and refining the classical Riemann–Lebesgue lemma for the Fourier transform of 2D quaternion signals. We then introduce the QLCT of a probability measure, and we study some of its basic properties such as linearity, reconstruction formula, continuity, boundedness, and positivity. Finally, we extend the classical Bochner–Minlos theorem to the QLCT setting showing the applicability of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.