Abstract

Approximate Bayesian computation (ABC) is a popular technique for approximating likelihoods and is often used in parameter estimation when the likelihood functions are analytically intractable. In the context of Hidden Markov Models (HMMs), we analyze the asymptotic behavior of the posterior distribution in ABC based Bayesian parameter estimation. In particular we show that Bernstein-von Mises type results still hold but that the resulting posterior is biased in the sense that it concentrates around a point in parameter space that differs from the true parameter value. Furthermore we obtain precise rates for the size of this bias with respect to a natural accuracy parameter of the ABC method. Finally we discuss, via a numerical example, the implications of our results for the practical implementation of ABC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.