Abstract

In this paper, we classify the asymptotic behavior for a class of stochastic SIR epidemic models represented by stochastic differential systems where the Brownian motions and Lévy jumps perturb to the linear terms of each equation. We construct a threshold value between permanence and extinction and develop the ergodicity of the underlying system. It is shown that the transition probabilities converge in total variation norm to the invariant measure. Our results can be considered as a significant contribution in studying the long term behavior of stochastic differential models because there are no restrictions imposed to the parameters of models. Techniques used in proving results of this paper are new and suitable to deal with other stochastic models in biology where the noises may perturb to nonlinear terms of equations or with delay equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.