Abstract

This paper discusses a time global existence, asymptotic behavior and a singular limit of a solution to the initial boundary value problem for a quantum drift-diffusion model of semiconductors over a one-dimensional bounded domain. Firstly, we show a unique existence and an asymptotic stability of a stationary solution for the model. Secondly, it is shown that the time global solution for the quantum drift-diffusion model converges to that for a drift-diffusion model as the scaled Planck constant tends to zero. This singular limit is called a classical limit. Here these theorems allow the initial data to be arbitrarily large in the suitable Sobolev space. We prove them by applying an energy method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call