Abstract

The previously-obtained analytical asymptotic expressions for the Gell-Mann-Low function β(g) and anomalous dimensions in the ϕ4 theory in the limit g → ∞ are based on the parametric representation of the form g = f(t), β(g) = f 1(t) (where t ∝ g −1/20 is the running parameter related to the bare charge g 0), which is simplified in the complex t plane near a zero of one of the functional integrals. In this work, it has been shown that the parametric representation has a singularity at t → 0; for this reason, similar results can be obtained for real g 0 values. The problem of the correct transition to the strong-coupling regime is simultaneously solved; in particular, the constancy of the bare or renormalized mass is not a correct condition of this transition. A partial proof has been given for the theorem of the renormalizability in the strong-coupling region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.