Abstract

This work deals with the extension problem for the fractional Laplacian on Riemannian symmetric spaces G/K of noncompact type and of general rank, which gives rise to a family of convolution operators, including the Poisson operator. More precisely, motivated by Euclidean results for the Poisson semigroup, we study the long-time asymptotic behavior of solutions to the extension problem for L1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^1$$\\end{document} initial data. In the case of the Laplace–Beltrami operator, we show that if the initial data are bi-K-invariant, then the solution to the extension problem behaves asymptotically as the mass times the fundamental solution, but this convergence may break down in the non-bi-K-invariant case. In the second part, we investigate the long-time asymptotic behavior of the extension problem associated with the so-called distinguished Laplacian on G/K. In this case, we observe phenomena which are similar to the Euclidean setting for the Poisson semigroup, such as L1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^1$$\\end{document} asymptotic convergence without the assumption of bi-K-invariance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call