Abstract

In this paper we study the Cauchy problem for 1-D Euler–Poisson system, which represents a physically relevant hydrodynamic model but also a challenging case for a bipolar semiconductor device by considering two different pressure functions and a non-flat doping profile. Different from the previous studies (Gasser et al., 2003 [7], Huang et al., 2011 [12], Huang et al., 2012 [13]) for the case with two identical pressure functions and zero doping profile, we realize that the asymptotic profiles of this more physical model are their corresponding stationary waves (steady-state solutions) rather than the diffusion waves. Furthermore, we prove that, when the flow is fully subsonic, by means of a technical energy method with some new development, the smooth solutions of the system are unique, exist globally and time-algebraically converge to the corresponding stationary solutions. The optimal algebraic convergence rates are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.