Abstract
In this study, we consider the one-dimensional bipolar quantum drift-diffusion model, which consists of the coupled nonlinear fourth-order parabolic equation and the electric field equation. We first show the global existence of the strong solution of the initial boundary value problem in the quarter plane. Moreover, we show the self-similarity property of the strong solution of the bipolar quantum drift-diffusion model in the large time. Namely, we show the unique global strong solution with strictly positive density to the initial boundary value problem of the quantum drift-diffusion model, which in large time, tends to have a self-similar wave at an algebraic time-decay rate. We prove them in an energy method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.