Abstract

Dans l'espace euclidien R 11 soit L=(1/2) a ij ∂ i ∂ j +b i ∂ i un operateur uniformement elliptique et soit V=(V 1 , ..., V n ) un champ vectoriel. Soit q une fonction continue non negative bornee. Soit D un domaine borne et soit f une fonction mesurable bornee sur ∂D. Soit γ un champ vectoriel non tangentiel sur ∂D. On considere la solution U f e du probleme aux valeurs limites (e 2 L+V)u f e−qu f e=0 sur D, ∂u f e/∂g=f sur ∂D. On etudie le comportement asymptotique de la solution u f e quand e→0

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.