Abstract

In this paper we study well-posedness and asymptotic behavior of solution of a free boundary problem modeling the growth of multi-layer tumors under the action of an external inhibitor. We first prove that this problem is locally well-posed in little Holder spaces. Next we investigate asymptotic behavior of the solution. By computing the spectrum of the linearized problem and using the linearized stability theorem, we give the rigorous analysis of stability and instability of all stationary flat solutions under the non-flat perturbations. The method used in proving these results is first to reduce the free boundary problem to a differential equation in a Banach space, and next use the abstract well-posedness and geometric theory for parabolic differential equations in Banach spaces to make the analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.