Abstract

In this paper, we consider the problem with a gas–gas free boundary for the one dimensional isentropic compressible Navier–Stokes–Korteweg system. For shock wave, asymptotic profile of the problem is shown to be a shifted viscous shock profile, which is suitably away from the boundary, and prove that if the initial data around the shifted viscous shock profile and its strength are sufficiently small, then the problem has a unique global strong solution, which tends to the shifted viscous shock profile as time goes to infinity. Also, we show the asymptotic stability toward rarefaction wave without the smallness on the strength if the initial data around the rarefaction wave are sufficiently small.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.