Abstract

<p style='text-indent:20px;'>In this paper, we study the asymptotic behavior of non-autonomous fractional stochastic lattice systems with multiplicative noise. The considered systems are driven by the fractional discrete Laplacian, which features the infinite-range interactions. We first prove the existence of pullback random attractor in <inline-formula><tex-math id="M1">\begin{document}$ \ell^2 $\end{document}</tex-math></inline-formula> for stochastic lattice systems. The upper semicontinuity of random attractors is also established when the intensity of noise approaches zero.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.