Abstract
The problem of estimating the exponent of a stable law is receiving an increasing amount of attention because Pareto's law (or Zipf's law) describes many biological phenomena very well (see e.g. Hill (1974)). This problem was first solved by Hill (1975), who proposed an estimate, and the convergence of that estimate to some positive and finite number was shown to be a characteristic of distribution functions belonging to the Fréchet domain of attraction (Mason (1982)). As a contribution to a complete theory of inference for the upper tail of a general distribution function, we give the asymptotic behavior (weak and strong) of Hill's estimate when the associated distribution function belongs to the Gumbel domain of attraction. Examples, applications and simulations are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.