Abstract
The asymptotic behavior of eigenvalues of a boundary value problem for a secondorder differential-operator equation in a separable Hilbert space on a finite interval is studied for the case in which the same spectral parameter occurs linearly in the equation and quadratically in one of the boundary conditions. We prove that the problem has a sequence of eigenvalues converging to zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.