Abstract
Consider stochastic functional differential equations depending on whole past histories in a finite time interval, which determine non-Markovian processes. Under the uniformly elliptic condition on the coefficients of the diffusion terms, the solution admits a smooth density with respect to the Lebesgue measure. In the present paper, we will study the large deviations for the family of the solution process and the asymptotic behaviors of the density. The Malliavin calculus plays a crucial role in our argument.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.