Abstract
We consider a sequence of blowup solutions of a two-dimensional, second-order elliptic equation with exponential nonlinearity and singular data. This equation has a rich background in physics and geometry. In a work of Bartolucci–Chen–Lin–Tarantello, it is proved that the profile of the solutions differs from global solutions of a Liouville-type equation only by a uniformly bounded term. The present paper improves their result and establishes an expansion of the solutions near the blowup points with a sharp error estimate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.