Abstract

This paper deals with a chemostat model with an internal inhibitor. First, the elementary stability and asymptotic behavior of solutions of the system are determined. Second, the effects of the inhibitor are considered. It turns out that the parameter μ, which measures the effect of the inhibitor, plays a very important role in deciding the stability and longtime behavior of solutions of the system. The results show that if μ is sufficiently large, this model has no coexistence solution and one of the semitrivial equilibria is a global attractor when the maximal growth rate a of the species u lies in certain range; but when a belongs to another range, all positive solutions of this model are governed by a limit problem, and two semitrivial equilibria are bistable. The main tools used here include monotone system theory, degree theory, bifurcation theory and perturbation technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.