Abstract
We consider a two-particle discrete Schrodinger operator corresponding to a system of two identical particles on a lattice interacting via an attractive pairwise zero-range potential. We show that there is a unique eigenvalue below the bottom of the essential spectrum for all values of the coupling constant and two-particle quasimomentum. We obtain a convergent expansion for the eigenvalue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.