Abstract
Nous determinons le comportement asymptotique en temps long d’une diffusion relativiste a valeurs dans le fibre tangent unitaire d’un espace de Robertson–Walker. On montre en particulier qu’au voisinage du temps d’explosion de la diffusion, sa projection sur la variete de base converge presque surement vers un point aleatoire de la frontiere causale et nous decrivons le comportement du vecteur tangent au voisinage de ce point limite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.