Abstract

The long time behavior of a logistic-type equation modeling the motion of cells is investigated. The equation we consider takes into account birth and death processes using a simple logistic effect as well as a nonlocal motion of cells using a nonlocal Darcy's law with regular kernel. Using the periodic framework we first investigate the well-posedness of the problem before deriving some information about its long time behavior. The lack of asymptotic compactness of the system is overcome by making use of the Young measure theory. This allows us to conclude that the semiflow converges for the Young measure topology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.