Abstract
The article is concerned with the study of asymptotic behavior of solutions of the Burgers equation and its generalizations with initial value — boundary problem on a finite interval, with constant boundary conditions. Since these equations take a dissipation into account, it is naturally to presuppose that any initial profile will evolve to an invariant time-independent solution with the same boundary values. Yet the answer happens to be slightly more complex. There are three possibilities: the initial profile may regularly decay to an invariant solution; or a Heaviside-type gap develops through a dispersive shock and multi-oscillations; or, exotically, an asymptotic limit is a 'frozen multi-oscillation' piecewise-differentiable solution, composed of different smooth invariant solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.