Abstract
We consider a nonlinear age-structured model, inspired by hematopoiesis modelling, describing the dynamics of a cell population divided into mature and immature cells. Immature cells, that can be either proliferating or non-proliferating, differentiate in mature cells, that in turn control the immature cell population through a negative feedback. We reduce the system to two delay differential equations, and we investigate the asymptotic stability of the trivial and the positive steady states. By constructing a Lyapunov function, the trivial steady state is proven to be globally asymptotically stable when it is the only equilibrium of the system. The asymptotic stability of the positive steady state is related to a delay-dependent characteristic equation. Existence of a Hopf bifurcation and stability switch for the positive steady state is established. Numerical simulations illustrate the stability results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.