Abstract

We consider the problem of portfolio optimization in a simple incomplete market and under a general utility function. By working with the associated Hamilton--Jacobi--Bellman partial differential equation (HJB PDE), we obtain a closed-form formula for a trading strategy which approximates the optimal trading strategy when the time horizon is small. This strategy is generated by a first order approximation to the value function. The approximate value function is obtained by constructing classical sub- and super-solutions to the HJB PDE using a formal expansion in powers of horizon time. Martingale inequalities are used to sandwich the true value function between the constructed sub- and super-solutions. A rigorous proof of the accuracy of the approximation formulas is given. We end with a heuristic scheme for extending our small-time approximating formulas to approximating formulas in a finite time horizon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.