Abstract

An asymptotic approach for determining periodic solutions of non-linear vibration problems of continuous structures (such as rods, beams, plates, etc.) is proposed. Starting with the well-known perturbation technique, the independent displacement and frequency is expanded in a power series of a natural small parameter. It leads to infinite systems of interconnected non-linear algebraic equations governing the relationships between modes, amplitudes and frequencies. A non-trivial asymptotic technique, based on the introduction of an artificial small parameter is used to solve the equations. An advantage of the procedure is the possibility to take into account a number of vibration modes. As examples, free longitudinal vibrations of a rod and lateral vibrations of a beam under cubically non-linear restoring force are considered. Resonance interactions between different modes are investigated and asymptotic formulae for corresponding backbone curves are derived.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.